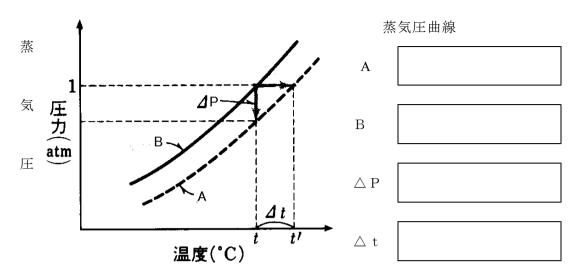
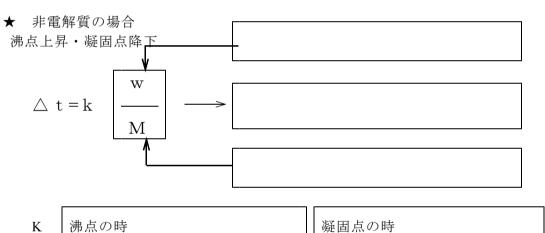
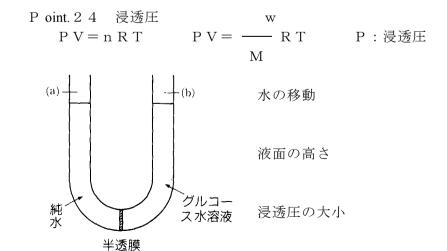
P oint.19 水への溶解性

水は よ	って	分子である。 ,		は水に	溶ける。	
★塩	で水に溶けな	いもの・・・・	• 沈殿物	ı	溶解度曲線	
A	gCl. Pb	C 1 2		溶		
С	u S. C d S	. ZnS		角军		
F	е (ОН) з.	A1 (OH)	з. Си (ОН) 2 度		
С	аСОз. Ва	аСОз. Са5	SO ₄ . BaS() ₄	温度	
	ナトリウム塩)		すべて溶り 学解	ける		
	H 3 O H	溶ける		C 6 H		ける
С		溶けない 数とCの数が 同程度の時で		HO HO	CH₂OH C — O C H C OH H C	/H ` он
P oint. 2 () 固体の溶角	军 度			H OH	_
		溶媒	溶	質	溶液	
溶角	解度より →	100			···	
問是	題から ──>		·····			
	溶	質 = 一定		溶質	- = 一定	
	溶			溶液	~ _	


★結晶水を含む物質の場合


析出する結晶または溶解する結晶を χ おく


	CuS	O ₄ · 5 H ₂ C	の場合		
溶質 CuSO4···· 溶媒 H2O····				H 2 O · · · ·	
D -:-4	0.1 左	との溶解症	···ヘンリーの	〜 辻 日II	
P oint.	21 気化	10俗牌及・・	····	ノ伝則	温度を上げると
1	溶解する気	(体の質量は	圧力に		溶解度は
2	溶解する気	気体の体積は	圧力に		圧力を上げると <u>溶解度は</u>
3	溶解する気	気体の体積を	標準状態に換	算すると圧	:力に
		1	2	3	
	1 atm				ヘンリーの法則に
	2 atm	1 g	1 L	1 L	従わない気体
	2 4411	g	L	L	
	3 atm				
g L L					
		率・質量%濃 (パーセント)	農 度) = -	質の質量 ――― 液の質量	× 1 0 0
	平14. 70	(// -E/F)			
②モル液	農度(体積	モル濃度)・			中に溶けている溶質のモル数
単位 mol/ L					
③質量-	③質量モル濃度(重量モル濃度)・ 中に溶けている溶質のモル数				
	単位 mol/Kg				

§ 9 溶液の性質

Point.23 溶液の沸点と蒸気圧降下

*	電解質の場合	4
_		4

沸点上昇・凝固点降下
$$\triangle$$
 $t = k$ $-\frac{w}{M}$

浸透圧

$$P V = \frac{w}{M} R T \times \boxed{}$$

 $N \ a \ C \ 1 \rightarrow$

沸点上昇度 100 ℃ - Δt

Δt

 $C \ a \ C \ 1_{2} \rightarrow$

水の場合

 0° C

凝固点降下度

Point.25 コロイド溶液

(1) コロイド粒子の条件

- ② ······ (B)
- (2) コロイド溶液の性質

関係する項目(A又はB)

- ①チンダル現象
- 2

- 3
- ④透析

★凝析効果 正コロイド

⑤ ____ ← ___

く く 負コロイド

⑦ 保護コロイド

< <

(3) コロイド溶液の化学反応式

§ 10 化学反応式

Point 26 化学反応式の作り方

①反応物質を左側に、生成物質を右側に化学式で書き、矢印で結ぶ。

②両辺の原子数を合わせるために、係数を入れる。 見慣れない原子から合わせる。(C・H・Oなどは後) 単体は最後に合わせる。

③イオン反応式の時は両辺の電気量も合わせる。

練習1 メタン(СН4)を燃焼させる。

練習2 石灰石に希塩酸を加えると二酸化炭素が発生する。

練習3 A1に水酸化ナトリウムを加えると水素とテトラヒドロキソアルミン酸ナトリウムができる。

化学反応式から分かること

 N_2 + $3 H_2$ \rightarrow $2 N H_3$

物質名		
分子数比		
モル数比		
質量比		
体積比		

練習 N₂ + 3 H₂ → 2 N H₃

モル数比

質量比

体積比

0.2mol		
	12 g	
		4.48 L

①化学反応式に	を加える。	3		
② → を l	こ換える。	4		
<注> 代数式	と同様に計算できる。			
反応熱 ①燃焼熱	★☆★ 注意 ★☆★			
②生成熱	①~⑥は 基準になる 生成熱は 単体からス	もの 1 mol について記入する。 タートしたもの		
③中和熱	基準になるものとし	は		
④溶解熱	. ↓			
⑤融解熱	何が(主語になる)	もの)		
⑥気化熱 ⑦ 結合エネルギー ¬スの法則 反応の過程に関係なく、反応の前後の状態が決まれば 反応熱の総和は一定である。				
練習 メタンの生成熱はいくらか? 与えられた式				
$C + 0_2 = C 0_2 + 394 \text{ Kj}$ ① ① $H_2 + 1/2 0_2 = H_2 0 (液) + 286 \text{Kj}$ ② ② $C H_4 + 2 O_2 = C 0_2 + 2 H_2 0 + 890 \text{ Kj}$ ③ ③				
求める式				
見比べる方法				

Point.27 熱化学方程式の作り方

練習 一酸化炭素の燃焼熱は? 与えられた式	
$C + O_2 = C O_2 + 394 Kg$	
$C + 1/2 O_2 = C O + 283 Kg$	 ②
求める式	
見比べる方法	